

KIR5.1 (phospho Ser416) rabbit pAb

Cat No.: ES4392

For research use only

Overview

Immunogen

Specificity

Product Name KIR5.1 (phospho Ser416) rabbit pAb

Host species Rabbit

WB;IHC;IF;ELISA **Applications Species Cross-Reactivity** Human; Mouse; Rat

Recommended dilutions Western Blot: 1/500 - 1/2000.

Immunohistochemistry: 1/100 - 1/300.

Immunofluorescence: 1/200 - 1/1000. ELISA: 1/5000. Not yet tested in other applications. The antiserum was produced against synthesized

peptide derived from mouse Kir5.1 around the phosphorylation site of Ser417. AA range:369-418 Phospho-KIR5.1 (S416) Polyclonal Antibody detects

endogenous levels of KIR5.1 protein only when

phosphorylated at S416.

Formulation Liquid in PBS containing 50% glycerol, 0.5% BSA and

0.02% sodium azide.

Store at -20°C. Avoid repeated freeze-thaw cycles. **Storage**

Protein Name Inward rectifier potassium channel 16

Gene Name KCNJ16

Cellular localization

Purification The antibody was affinity-purified from rabbit

antiserum by affinity-chromatography using

epitope-specific immunogen.

Clonality Polyclonal 1 mg/ml Concentration **Observed band** 48kD

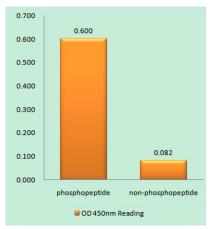
Human Gene ID

Human Swiss-Prot Number

Alternative Names KCNJ16; Inward rectifier potassium channel 16;

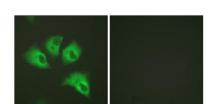
> Inward rectifier K(+) channel Kir5.1; Potassium channel; inwardly rectifying subfamily J member

> > www.elkbiotech.com

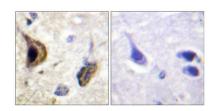

Background KCNJ16 (Potassium Voltage-Gated Channel

+86-27-59760950 ELKbio@ELKbiotech.com

Subfamily J Member 16) is a Protein Coding gene. Diseases associated with KCNJ16 include sesame syndrome and body dysmorphic disorder. Among its related pathways are Transmission across Chemical Synapses and Inwardly rectifying K+ channels. GO annotations related to this gene include inward rectifier potassium channel activity. An important paralog of this gene is KCNJ3. nward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ16 may be involved in the regulation of fluid and pH balance. In the kidney, together with KCNJ10, mediates basolateral K(+) recycling in distal tubules; this process is critical for Na(+) reabsorption at the tubules (PubMed: 24561201). he inward-rectifier potassium channel family (also known as 2-TM channels) include the strong inward-rectifier channels (Kir2.), the G-protein-activated inward-rectifier channels (Kir3.) and the ATP-sensitive channels (Kir6.), which combine with sulphonylurea receptors.



+86-27-59760950


Enzyme-Linked Immunosorbent Assay (Phospho-ELISA) for Immunogen Phosphopeptide (Phospho-left) and Non-Phosphopeptide (Phospho-right), using Kir5.1 (Phospho-Ser417) Antibody

Immunofluorescence analysis of HeLa cells, using Kir5.1 (Phospho-Ser417) Antibody. The picture on the right is blocked with the phospho peptide.

Immunohistochemistry analysis of paraffin-embedded human brain, using Kir5.1 (Phospho-Ser417) Antibody. The picture on the right is blocked with the phospho peptide.

Western blot analysis of lysates from RAW264.7 cells treated with forskolin 40nM 30', using Kir5.1 (Phospho-Ser417) Antibody. The lane on the right is blocked with the phospho peptide.

