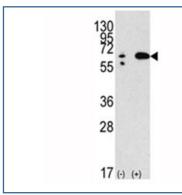
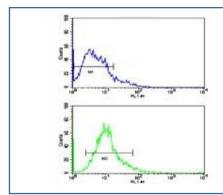


Beclin Antibody (F46280)


Catalog No.	Formulation	Size
F46280-0.4ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.4 ml
F46280-0.08ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.08 ml

Bulk quote request

Availability	1-3 business days
Species Reactivity	Human, Mouse
Predicted Reactivity	Bovine, Pig, Rat
Format	Purified
Clonality	Polyclonal (rabbit origin)
Isotype	Rabbit Ig
Purity	Purified
UniProt	Q14457
Applications	Western blot : 1:1000 IHC (Paraffin) : 1:50-1:100 Flow Cytometry : 1:10-1:50
Limitations	This Beclin antibody is available for research use only.


Western blot testing of Beclin antibody and (1) A2058, (2) HeLa, (3) mouse brain, (4) Y79, and (5) HL-60 lysate

Western blot analysis of Beclin in 293 lysate transiently transfected with the BECN1 gene (2ug/lane).

IHC analysis of FFPE human breast carcinoma tissue stained with the Beclin antibody

Flow cytometric analysis of Y79 cells using Beclin antibody (bottom histogram) compared to a negative control (top histogram). FITC-conjugated goat-anti-rabbit secondary Ab was used for the analysis.

Description

Macroautophagy is the major inducible pathway for the general turnover of cytoplasmic constituents in eukaryotic cells, it is also responsible for the degradation of active cytoplasmic enzymes and organelles during nutrient starvation.

Macroautophagy involves the formation of double-membrane bound autophagosomes which enclose the cytoplasmic constituent targeted for degradation in a membrane bound structure, which then fuse with the lysosome (or vacuole) releasing a single-membrane bound autophagic bodies which are then degraded within the lysosome (or vacuole). Beclin 1 plays a role in two fundamentally important cell biological pathways: autophagy and apoptosis. Beclin 1 is thought to function as a VPS and autophagy protein as part of a complex with Class III PI3 kinase, Vps34.

Application Notes

Titration of the Beclin antibody may be required due to differences in protocols and secondary/substrate sensitivity.

Immunogen

A portion of amino acids 210-239 from the human protein was used as the immunogen for this Beclin antibody.

Storage

Aliquot the Beclin antibody and store frozen at -20oC or colder. Avoid repeated freeze-thaw cycles.				
Ordering:Phone:858.663.9055 Fax:1.267.821.0800 Email:info@nsjbio.com	Copyright © NSJ Bioreagents. All rights reserved			