EnzyChrom[™] Glycerol Assay Kit (Cat# EGLY-200)

Quantitative Colorimetric/Fluorimetric Glycerol Determination

DESCRIPTION

GLYCEROL [*GLYCERIN* or *GLYCERINE*, C₃H₅(OH)₃] is widely used in foods, beverages and pharmaceutical formulations. It is also a main by-product of biodiesel production. Simple, direct and automation-ready procedures for measuring glycerol concentrations find wide applications. BioAssay Systems' glycerol assay uses a single Working Reagent that combines glycerol kinase, glycerol phosphate oxidase and color reactions in one step. The color intensity of the reaction product at 570nm or fluorescence intensity at λ em/ex = 585/530nm is directly proportional to glycerol concentration in the sample.

KEY FEATURES

Sensitive and accurate. Use as little as 10 μ L samples. Linear detection range in 96-well plate: 10 to 1000 μ M (92 μ g/dL to 9.2 mg/dL) glycerol for colorimetric assays and 2 to 50 μ M for fluorimetric assays.

Simple and convenient. The procedure involves addition of a single working reagent and incubation for 20 min at room temperature, compatible for HTS assays.

Improved reagent stability. The optimized formulation has greatly enhanced the reagent and signal stability.

APPLICATIONS:

Direct Assays: glycerol in biological samples (e.g. serum and plasma). **Drug Discovery/Pharmacology:** effects of drugs on glycerol metabolism. **Food and Beverages:** glycerol in food, beverages, pharmaceutical formulations etc.

KIT CONTENTS

Assay Buffer: 24 mLEnzyme Mix: 500 μLATP: 250 μLDye Reagent: 220 μLStandard: 100 μL 100 mM Glycerol

Storage conditions. The kit is shipped on ice. Store all components at -20°C. Shelf life of 12 months after receipt.

Precautions: reagents are for research use only. Normal precautions for laboratory reagents should be exercised while using the reagents. Please refer to Material Safety Data Sheet for detailed information.

COLORIMETRIC 96-WELL PROCEDURE

Note: SH-group containing reagents (e.g. mercaptoethanol, DTT) may interfere with this assay and should be avoided in sample preparation.

1. Equilibrate all components to room temperature. Keep thawed Enzyme Mix in a refrigerator or on ice. Dilute standard in distilled water as follows (diluted standards can be used for future assays when stored refrigerated).

No	STD + H ₂ O	Vol (µL)	Glycerol (mM)
1	10 μL + 990 μL	1000	1.0
2	6 μL + 994 μL	1000	0.6
3	3 μL + 997 μL	1000	0.3
4	0 μL + 1000 μL	1000	0

Transfer 10 μL standards and 10 μL samples into separate wells of a clear 96-well plate.

- 2. For each reaction well, mix 100 μ L Assay Buffer, 2 μ L Enzyme Mix, 1 μ L ATP and 1 μ L Dye Reagent in a clean tube. This Working Reagent should be used on the same day of preparation. Transfer 100 μ L Working Reagent into each reaction well. Tap plate to mix.
- 3. Incubate 20 min at room temperature. Read optical density at 570nm (550-585nm).

Note: if the Sample OD is higher than the Standard OD at 1.0 mM, dilute sample in water and repeat the assay. Multiply result by the dilution factor.

CALCULATION

Subtract blank OD (water, #4) from the standard OD values and plot the OD against standard concentrations. Determine the slope using linear regression fitting. The glycerol concentration of Sample is calculated as

$$[Glycerol] = \frac{OD_{SAMPLE} - OD_{H2O}}{Slope} \quad (mM)$$

 OD_{SAMPLE} and OD_{H20} are optical density values of the sample and water. **Conversions**: 1mM glycerol equals 9.2 mg/dL, 92 ppm.

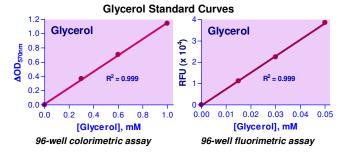
FLUORIMETRIC 96-WELL PROCEDURE

For fluorimetric assays, the linear detection range is 2 to 50 μ M glycerol. Mix 10 μ L 100 mM Standard with 990 μ L H₂O (*final* 1 mM).

No	$1 \text{ mM STD} + H_2O$	Vol (µL)	Glycerol (mM)
1	50 μL + 950 μL	1000	0.050
2	30 μL + 970 μL	1000	0.030
3	15 μL + 985 μL	1000	0.015
4	0 μL +1000 μL	1000	0

Dilute standards as above. Transfer 10 μL standards and 10 μL samples into separate wells of a *black* 96-well plate.

Add 100 μL Working Reagent (see Colorimetric Procedure). Tap plate to mix.


Incubate 20 min at room temperature and read fluorescence at $\lambda_{ex}=530nm$ and $\lambda_{em}=585nm.$

The glycerol concentration of Sample is calculated as

 $[Glycerol] = \frac{F_{SAMPLE} - F_{H2O}}{Slope} \quad (mM)$

MATERIALS REQUIRED, BUT NOT PROVIDED

Pipeting devices, centrifuge tubes, Clear flat-bottom 96-well plates, black 96-well plates (e.g. Corning Costar) and plate reader.

PUBLICATIONS

1. Li, C et al (2020). Matrix Gla protein regulates adipogenesis and is serum marker of visceral adiposity. Adipocyte, 9(1), 68-76.

2. Fontvieille, A et al (2019). Acute effect of post-resistance exercise milk-based supplement on substrate oxidation and fat mobilization in older men: A pilot study. Advances in Geriatric Medicine and Research, 1(2).

3. Pan, Y., et al. (2018). Salvianolic acid B improves mitochondrial function in 3T3-L1 adipocytes through a pathway involving PPARgamma coactivator-1alpha (PGC-1alpha). Frontiers in pharmacology, 9:671.

