

iFluor™ 700 Anti-human CD8 Antibody *SK1*

Catalog number: 100810J0, 100810J1

Unit size: 100 tests, 500 tests

Product Details

Storage Conditions 2-8°C with minimized light exposure. Do not freeze.

Expiration Date 12 months upon receiving

Concentration 0.1 mg/mL

Formulation Phosphate-buffered saline (PBS, pH 7.2), 0.09% sodium azide, 0.2% (w/v) BSA

Antibody Properties

Species Reactivity Human

Class Primary

Clonality Monoclonal

Host Mouse

Immunogen CD8a (T8, Leu2)

Clone SK1

Conjugate iFluor™ 700

Biological Properties

Appearance Blue liquid

Preparation Antibody purified by affinity chromatography and then conjugated with iFluor™ 700 under

optimal conditions

Application Flow Cytometry (FACS), Fluorescence Imaging

Spectral Properties

Conjugate iFluor™ 700

Excitation Wavelength 690 nm

Emission Wavelength 713 nm

Applications

SK1 is an anti-human monoclonal antibody that is specific for the CD8a antigen. CD8a (sometimes called MAL or Leu2) is a 32 - 34 kD member of the Ig superfamily that is expressed on the surface of cells such as NK cells and T cells. CD8 is a component of important cellular pathways, for example, the transmembrane receptor protein tyrosine kinase signaling pathway and cell surface receptor signaling pathway. From a research standpoint, it is of biological interest due to its association with important macromolecules/ligands like MHCI. CD8 is a very popular antibody target, with over 125000 publications in the last decade. CD8a is commonly used in flow cytometry applications as a phenotypic marker for

5 /1 1401 / 700 (E.	x/em = 690/713 nm)	•			