

PhosphoWorks[™] Colorimetric ATP Assay Kit

Catalog number: 21617 Unit size: 100 Tests

Component	Storage	Amount
Component A: Amplite™ Red Substrate (light sensitive)	Freeze (<-15 °C), Minimize light exposure	1 vial
Component B: Enzyme Mix	Freeze (<-15 °C), Minimize light exposure	1 bottle (Lyophilized powder)
Component C: Assay Buffer	Freeze (<-15 °C)	1 bottle (5 mL)
Component D: ATP Standard	Freeze (<-15 °C), Minimize light exposure	2.8 mg/vial
Component E: DMSO	Freeze (<-15 °C)	1 vial (100 μL)

OVERVIEW

Adenosine triphosphate (ATP) plays a fundamental role in cellular energetics, metabolic regulation and cellular signaling. It is referred as the \"molecular unit of currency\" of intracellular energy transfer to drive many processes and chemical synthesis in living cells. ATP also serves as a signaling molecule for cell communication and plays an important role in DNA and RNA synthesis. AAT Bioquest offers a variety of bioluminescence assay kits to determine nanomolar (nM) range of ATP with recombinant firefly luciferase (Cat# 21610 & 21609). These kits require luminescence plate readers, are frequently used for cell viability or cytotoxicity assays. PhosphoWorks™ Colorimetric ATP Assay Kit is based on a serial ATP-induced enzyme coupled reactions to produce hydrogen peroxide, which is spectrophotometrically quantified with our Amplite™ Red Substrate at OD 570 nm. The assay can detect ~3 µM of ATP in a 100 µL reaction volume with minimal interference from ADP and AMP. It provides a robust, simple and convenient assay for measuring ATP levels in biological samples. The PhosphoWorks™ Colorimetric ATP Assay kits.

AT A GLANCE

Protocol summary

- 1. Prepare ATP working solution (50 μL)
- 2. Add ATP standards or test samples (50 $\mu\text{L})$
- 3. Incubate at room temperature for 10 30 minutes
- 4. Monitor absorbance at 570 nm

Important Thaw the kit components at room temperature before starting the experiment.

KEY PARAMETERS				
Instrument:	Absorbance microplate reader			
Absorbance:	570 nm			
Recommended plate:	Clear bottom			

PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 $^{\circ}$ C after preparation. Avoid repeated freeze-thaw cycles.

1. Amplite TM Red Substrate stock solution (200X):

Add 30 μ L of DMSO (Component E) into the vial of AmpliteTM Red Substrate (Component A) to make 200X AmpliteTM Red Substrate stock solution.

2. ATP standard solution (10 mM):

Add 0.5 mL of ddH2O into the vial of ATP Standard (Component D) to make 10 mM ATP standard solution.

PREPARATION OF STANDARD SOLUTION

ATP standard

For convenience, use the Serial Dilution Planner: https://www.aatbio.com/tools/serial-dilution/21617

Add 10 μL of 10 mM ATP standard solution into 990 μL 1X PBS buffer to generate 100 μM ATP standard solution (AS7). Take 100 μM ATP standard solution (AS7) and perform 1:2 serial dilutions to get serially diluted ATP standards (AS6-AS1) with 1X PBS buffer.

PREPARATION OF WORKING SOLUTION

1. Add 5 mL of Assay Buffer (Component C) into Enzyme Mix bottle (Component B), and mix well.

2. Add 25 μL of 200X Amplite^{TM} Red Substrate stock solution to the Enzyme Mix bottle, and mix well to make ATP working solution.

SAMPLE EXPERIMENTAL PROTOCOL

Table 1. Layout of ATP standards and test samples in a clear bottom 96-well microplate. AS= ATP Standards (AS1 - AS7, 1.56 to 100 μM), BL=Blank Control, TS=Test Samples.

BL	BL	TS	TS
AS1	AS1		
AS2	AS2		
AS3	AS3		
AS4	AS4		
AS5	AS5		
AS6	AS6		
AS7	AS7		

Table 2. Reagent composition for each well.

Well	Volume	Reagent
AS1 - AS7	50 µL	Serial Dilutions (1.56 to 100 μ M)
BL	50 µL	1 X PBS Buffer
TS	50 µL	Test Sample

1. Prepare ATP standards (AS), blank controls (BL), and test samples (TS) according to the layout provided in Tables 1 and 2. For a 384-well plate, use 25 μ L of reagent per well instead of 50 μ L.

Tel: 408-733-1055 | Fax: 408-733-1304 | Email: support@aatbio.com

©2018 AAT Bioquest, Inc. Last revised October 2018. For more information and tools, please visit https://www.aatbio.com

- 2. Add 50 μL of ATP working solution to each well of ATP standard, blank control, and test samples to make the total ATP assay volume of 100 μL /well. For a 384-well plate, add 25 μL of ATP working solution into each well instead, for a total volume of 50 μL /well.
- 3. Incubate the reaction at room temperature for 10 30 minutes, protected from light.
- 4. Monitor the absorbance increase with an absorbance plate reader at OD of 570 $\,$ nm.

EXAMPLE DATA ANALYSIS AND FIGURES

The reading (Absorbance (570 nm)) obtained from the blank standard well is used as a negative control. Subtract this value from the other standards' readings to obtain the base-line corrected values. Then, plot the standards' readings to obtain a standard curve and equation. This equation can be used to calculate ATP samples. We recommend using the Online Linear Regression Calculator which can be found at:

https://www.aatbio.com/tools/linear-logarithmic-semi-log-regression-onlinecalculator

Figure 1. ATP dose response measured with PhosphoWorks[™] Colorimetric ATP Assay Kit in a 96-well clear bottom plate using a SpectraMax microplate reader (Molecular Devices).

DISCLAIMER

AAT Bioquest provides high-quality reagents and materials for research use only. For proper handling of potentially hazardous chemicals, please consult the Safety Data Sheet (SDS) provided for the product. Chemical analysis and/or reverse engineering of any kit or its components is strictly prohibited without written permission from AAT Bioquest. Please call 408-733-1055 or email info@aatbio.com if you have any questions.