

Amplite[™] Fluorimetric Peroxynitrite Quantification Kit *Green Fluorescence* Catalog number: 16316 Unit size: 100 Tests

Component	Storage	Amount
Component A: DAX-J2™ PON Green 99	Freeze (<-15 °C), Minimize light exposure	1 vial
Component B: Assay Buffer	Freeze (<-15 °C)	1 bottle (20 mL)
Component C: DMSO	Freeze (<-15 °C)	1 vial (100 μL)

OVERVIEW

Peroxynitrite (ONOO-) is a strong oxidizing species and a highly active nitrating agent. Peroxynitrite is formed from the reaction between superoxide radicals and nitric oxide generated in cells. It can damage a wide array of biomolecules including proteins, enzymes, lipids and nucleic acids, eventually contributing to cell death. Due to its extremely short half-life and low steady-state concentration, it has been challenging to detect and quantify peroxynitrite in solution. In order to address this need, AAT Bioquest's Amplite™ Fluorimetric Peroxynitrite Quantification Kit provides a sensitive tool to measure ONOO- in solution. DAX-J2™ PON Green 99 reacts with ONOO- to generate a bright green fluorescent product. It specifically reacts with ONOO- with high selectivity over other reactive oxygen species (ROS) and reactive nitrogen species (RNS). This kit can be used with a fluorescence microplate reader and spectrometer.

AT A GLANCE

Important Thaw all the kit components to room temperature before use.

KEY PARAMETERS

Instrument:	Fluorescence microplate reader
Excitation:	490 nm
Emission:	530 nm
Cutoff:	515 nm
Recommended plate:	Solid black

PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 $^{\circ}$ C after preparation. Avoid repeated freeze-thaw cycles.

1. DAX-J2[™] PON Green 99 stock solution (500X):

Add 20 μL of DMSO (Component C) into the vial of DAX-J2TM PON Green 99 (Component A) to make 500X stock solution.

Note 20 μ L of reconstituted DAX-J2TM PON Green 99 stock solution is enough for 1 plate. Keep from light.

2. Peroxynitrite (ONOO⁻) stock solution (not provided):

Peroxynitrite stock solution was synthesized according to literature report. Briefly, a mixture of sodium nitrite (0.6 M) and hydrogen peroxide (0.7 M) was acidified with hydrochloric acid (0.6 M), and sodium hydroxide (1.5 M) was added within 1 - 2 seconds to make the solution alkaline. The excess hydrogen peroxide was removed by passing the solution through a short column of manganese dioxide. The extinction coefficient of peroxynitrite solution in 0.1 M NaOH is 1670 $M^{-1}cm^{-1}$ at 302 nm. The ONOO⁻ stock solution is not stable; we highly recommend make it fresh to use.

PREPARATION OF STANDARD SOLUTION

Peroxynitrite standard

For convenience, use the Serial Dilution Planner: https://www.aatbio.com/tools/serial-dilution/16316 Dilute Peroxynitrite (ONOO⁻) stock solution in Assay buffer (Component B) to have 20 μ M ONOO⁻ standard solution, and then perform 1:2 serial dilutions to get serially diluted ONOO⁻ standard solution (O7 - O1).

PREPARATION OF WORKING SOLUTION

Add 20 μL of 500X DAX-J2TM PON Green 99 stock solution into 10 mL of Assay Buffer (Component B) and mix well.

Note This assay mixture is enough for one 96-well plate. Protect from light.

SAMPLE EXPERIMENTAL PROTOCOL

Table 1. Layout of ONOO⁻ standards and test samples in a solid black 96-well microplate. O = ONOO⁻ Standards (O1 - O7, 0.313 to 20 μ M); BL = Blank Control; TS = Test Samples.

BL	BL	TS	TS
01	01		
02	02		
03	03		
O4	04		
05	05		
O6	O6		
07	07		

Table 2. Reagent composition for each well.

Well	Volume	Reagent
01 - 07	50 µL	Serial Dilutions (0.313 to 20 μ M)
BL	50 μL	assay buffer
TS	50 µL	test sample

- 1. Prepare ONOO⁻ standards (O), blank controls (BL), and test samples (TS) according to the layout provided in Tables 1 and 2. For a 384-well plate, use 25 μ L of reagent per well instead of 50 μ L.
- 2. Add 50 μL of working solution to each well of ONOO⁻ standard, blank control, and test samples to make the total ONOO⁻ assay volume of 100 μL /well. For a 384-well plate, add 25 μL of working solution into each well instead, for a total volume of 50 μL /well.
- Incubate the reaction at room temperature for 5 to 10 minutes, protected from light.
- Monitor the fluorescence increase at Ex/Em = 490/530 nm (cutoff at 515 nm) with a fluorescence plate reader.

EXAMPLE DATA ANALYSIS AND FIGURES

The reading (RFU) obtained from the blank standard well is used as a negative control. Subtract this value from the other standards' readings to obtain the baseline corrected values. Then, plot the standards' readings to obtain a standard curve and equation. This equation can be used to calculate Peroxynitrite samples. We recommend using the Online Four Parameter Logistics Calculator which can be found at:

https://www.aatbio.com/tools/four-parameter-logistic-4pl-curve-regressiononline-calculator

Figure 1. Peroxynitrite was measured with Amplite[™] Fluorimetric Peroxynitrite Quantification Kit on a solid black 96-well plate using a Gemini microplate reader (Molecular Devices).

DISCLAIMER

AAT Bioquest provides high-quality reagents and materials for research use only. For proper handling of potentially hazardous chemicals, please consult the Safety Data Sheet (SDS) provided for the product. Chemical analysis and/or reverse engineering of any kit or its components is strictly prohibited without written permission from AAT Bioquest. Please call 408-733-1055 or email info@aatbio.com if you have any questions.