

ATTO 700 PEG4 DBCO

Catalog Number: 70305 Unit Size: 1 mg

Product Details	
Storage Conditions	Freeze (< -15 °C), Minimize light exposure
Expiration Date	12 months upon recieving
Chemical Properties	
Appearance	Solid
Molecular Weight	1071.30
Soluble In	DMSO
Chemical Structure	
Spectral Properties	$+ N^{-0} \sim 0 \sim$

Spectral Properties

Excitation Wavelength	699 nm
Emission Wavelength	715 nm

Applications

ATTO 700 is a near-infrared fluorescent dye characterized by its strong absorption, high photo and thermal stability, and good aqueous solubility. It is optimally excited within the 670-715 nm wavelength range. As a zwitterionic compound, ATTO 700 remains electrically neutral when conjugated to biomolecules or other substrates. Its strong electron-accepting properties result in efficient fluorescence quenching by electron donors such as guanine and tryptophan. These properties make ATTO 700 ideal for precise applications including single-molecule detection and super-resolution microscopy techniques like PALM, dSTORM, and STED. Furthermore, ATTO 700 is compatible with flow cytometry (FACS), fluorescence in situ hybridization (FISH), and a variety of other biological assays, making it a versatile tool in advanced fluorescence-based research.