

Nourseothricin - Solution

NTC or clonNAT
sterile ready-to-go stock solution

Cat. No.	Amount
AB-101S	1 ml (100 mg/ml)
AB-101L	5 ml (100 mg/ml)
AB-101-10ML	10 ml (100 mg/ml)
AB-101-50ML	50 ml (100 mg/ml)

Streptothricin C: n=4
Streptothricin D: n=3
Streptothricin E: n=2
Streptothricin F: n=1

For general laboratory use. Not intended for human or animal diagnostic or therapeutic uses.

Please centrifuge briefly before opening (volume ≤2 ml).

Shipping: shipped on gel packs

Storage Conditions: Store at -20 °C

Shelf Life: 12 months

Molecular Formula: C₁₉H₃₄N₈O₈ · H₂SO₄ (Streptothricin F)

Molecular Weight: 600.6 g/mol (Streptothricin F)

CAS#: 96736-11-7

Form: liquid

Color: beige

Concentration: 100 mg/ml of sterile filtrated Nourseothricin in water

pH: 6.0 ± 1.0

Description:

Nourseothricin is a mixture of Streptothricins C, D, E and F and can be used as selection antibiotic for a broad spectrum of pro- and eukaryotic organisms (i.e. Gram-positive and Gram-negative bacteria, yeast, filamentous fungi, protozoa, microalgae, plants and many more).

Selection of recombinant strains is based on inactivation of Nourseothricin by mono-acetylation of the β -amino group of the β -lysine residue by Nourseothricin N-acetyltransferase, the product of the *sat1* or *nat1* genes.

Selection:

For selection of recombinant *Leishmania* strains Nourseothricin is added to the growth medium to a final concentration of 100 μ g/ml.

For selection of other species please refer to the product page.

Selected References:

- [1] Goldstein *et al.* (1999) Three New Dominant Drug Resistance Cassettes for Gene Disruption in *Saccharomyces cerevisiae*. *Yeast* **15**: 1541
- [2] Kojic *et al.* (2000) Shuttle vectors for genetic manipulations in *Ustilago maydis*. *Can. J. Microbiology* **46**: 333
- [3] Werner *et al.* (2001) Aminoglycoside-Streptothricin Resistance Gene Cluster aadE-sat4-aphA-3 Disseminated among multiresistant Isolates of *Enterococcus faecium*. *Antimicrob. Agents Chemotherapy* **45**: 3267
- [4] Hoff *et al.* (2009) Homologous recombination in the antibiotic producer *Penicillium chrysogenum*: strain Δ Pcku70 shows up-regulation of genes from the HOG pathway. *Appl. Microbiol. Biotechnol.* **85**:1081
- [5] Kochupurakkal & Iglesias (2013) Nourseothricin N-Acetyl Transferase: A Positive Selection Marker for Mammalian Cells. *PLoS One* **8**: e68509
- [6] Ramos *et al.* (2013) Functional genomics tools to decipher the pathogenicity mechanisms of the necrotrophic fungus *Plectosphaerella cucumerina* in *Arabidopsis thaliana*. *Molecular Plant Pathology* **14**: 44
- [7] Schubert *et al.* (2013) Agrobacterium-mediated transformation of the white-rot fungus *Physisporinus vitreus*. *J. Microbiol. Meth.* **95**: 251
- [8] Buhmann *et al.* (2014) A Tyrosine-Rich Cell Surface Protein in the Diatom *Amphora coffeaeformis* Identified through Transcriptome Analysis and Genetic Transformation. *PLOS one* **9**: e110369
- [9] Kraeva *et al.* (2015) *Leptomonas seymouri*: Adaptations to the Digenous Life Cycle Analyzed by Sequencing, Transcriptome Profiling and Co-infection with *Leishmania donovani*. *PLOS Pathogens* **11**: e1005127
- [10] Paschke *et al.* (2018) Rapid and efficient genetic engineering of both wild type and axenic strains of *Dictyostelium discoideum*. *PLoS One* **13**: e0196809